skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mellett, Travis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coastal upwelling currents such as the California Current System (CCS) comprise some of the most productive biological systems on the planet. Diatoms dominate these upwelling events in part due to their rapid response to nutrient entrainment. In this region, they may also be limited by the micronutrient iron (Fe), an important trace element primarily involved in photosynthesis and nitrogen assimilation. The mechanisms behind how diatoms physiologically acclimate to the different stages of the upwelling conveyor belt cycle remain largely uncharacterized. Here, we explore their physiological and metatranscriptomic response to the upwelling cycle with respect to the Fe limitation mosaic that exists in the CCS. Subsurface, natural plankton assemblages that would potentially seed surface blooms were examined over wide and narrow shelf regions. The initial biomass and physiological state of the phytoplankton community had a large impact on the overall response to simulated upwelling. Following on‐deck incubations under varying Fe physiological states, our results suggest that diatoms quickly dominated the blooms by “frontloading” nitrogen assimilation genes prior to upwelling. However, diatoms subjected to induced Fe limitation exhibited reductions in carbon and nitrogen uptake and decreasing biomass accumulation. Simultaneously, they exhibited a distinct gene expression response which included increased expression of Fe‐starvation induced proteins and decreased expression of nitrogen assimilation and photosynthesis genes. These findings may have significant implications for upwelling events in future oceans, where changes in ocean conditions are projected to amplify the gradient of Fe limitation in coastal upwelling regions. 
    more » « less
  2. Abstract. Supply of iron (Fe) to the surface ocean supports primary productivity, and while hydrothermal input of Fe to the deep ocean is knownto be extensive it remains poorly constrained. Global estimates of hydrothermal Fe supply rely on using dissolved Fe (dFe) toexcess He (xs3He) ratios to upscale fluxes, but observational constraints on dFe/xs3He may be sensitive toassumptions linked to sampling and interpolation. We examined the variability in dFe/xs3He using two methods of estimation, forfour vent sites with different geochemistry along the Mid-Atlantic Ridge. At both Rainbow and TAG, the plume was sampled repeatedly and the range ofdFe/xs3He was 4 to 63 and 4 to 87 nmol:fmol, respectively, primarily due to differences in plume age. To account for backgroundxs3He and shifting plume position, we calibrated He values using contemporaneous dissolved Mn (dMn). Applying thisapproach more widely, we found dFe/xs3He ratios of 12, 4–8, 4–44, and 4–86 nmol fmol−1 for the Menez Gwen, LuckyStrike, Rainbow, and TAG hydrothermal vent sites, respectively. Differences in plume dFe/xs3He across sites were not simplyrelated to the vent endmember Fe and He fluxes. Within 40 km of the vents, the dFe/xs3He ratios decreased to3–38 nmol fmol−1, due to the precipitation and subsequent settling of particulates. The ratio of colloidal Fe to dFe wasconsistently higher (0.67–0.97) than the deep N. Atlantic (0.5) throughout both the TAG and Rainbow plumes, indicative of Fe exchangebetween dissolved and particulate phases. Our comparison of TAG and Rainbow shows there is a limit to the amount of hydrothermal Fe releasedfrom vents that can form colloids in the rising plume. Higher particle loading will enhance the longevity of the Rainbow hydrothermal plume withinthe deep ocean assuming particles undergo continual dissolution/disaggregation. Future studies examining the length of plume pathways required toescape the ridge valley will be important in determining Fe supply from slow spreading mid-ocean ridges to the deep ocean, along with thefrequency of ultramafic sites such as Rainbow. Resolving the ridge valley bathymetry and accounting for variability in vent sources in globalbiogeochemical models will be key to further constraining the hydrothermal Fe flux. 
    more » « less
  3. The cyanobacterium  Trichodesmium  plays an essential role supporting ocean productivity by relieving nitrogen limitation via dinitrogen (N 2 ) fixation. The two common Trichodesmium clades,  T. erythraeum  and  T. thiebautii , are both observed in waters along the West Florida Shelf (WFS). We hypothesized that these taxa occupy distinct realized niches, where  T. thiebautii  is the more oceanic clade. Samples for DNA and water chemistry analyses were collected on three separate WFS expeditions (2015, 2018, and 2019) spanning multiple seasons; abundances of the single copy housekeeping gene  rnpB  from both clades were enumerated via quantitative PCR. We conducted a suite of statistical analyses to assess Trichodesmium  clade abundances in the context of the physicochemical data. We observed a consistent coastal vs. open ocean separation of the two clades:  T. erythraeum  was found in shallow waters where the concentrations of dissolved iron (dFe) and the groundwater tracer Ba were significantly higher, while  T. thiebautii  abundance was positively correlated with water column depth. The Loop Current intrusion in 2015 with entrained Missisippi River water brought higher dFe and elevated abundance of both clades offshore of the 50 m isobath, suggesting that both clades are subject to Fe limitation on the outer shelf. Whereas, previous work has observed that  T. thiebautii  is more abundant than  T. erythraeum  in open ocean surface waters, this is the first study to examine  Trichodesmium  niche differentiation in a coastal environment. Understanding the environmental niches of these two key taxa bears important implications for their contributions to global nitrogen and carbon cycling and their response to global climate change. 
    more » « less